Sains Malaysiana 54(9)(2025): 2327-2335

http://doi.org/10.17576/jsm-2025-5409-18

 

Monitoring Stability of Nonconformities Per Unit with Efficient Memory-Type Structure

(Memantau Kestabilan Ketakakuran Setiap Unit dengan Struktur Jenis Memori yang Cekap)

 

WAQAR HAFEEZ1,*, ZAMEER ABBAS2, HAFIZ ZAFAR NAZIR3 & SAJID SULTAN4

 

1Haide College, Ocean University of China, Qingdao, Shandong, China
2KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, China
3Department of Statistics, University of Sargodha, Sargodha, Pakistan
4Dupty Director (Statistical Analyst), National School of Public Policy, Lahore, Pakistan

 

Received: 3 December 2024/Accepted: 2 July 2025

 

Abstract

For monitoring the qualitative characteristics of interest attribute control charts are recommended. Poisson control charts are most frequently used to track the number of nonconformities per unit in industrial processes during the inspection. This study introduces a Poisson EWMA (PEWMA) charting scheme using a progressive paradigm (PEWMA-p) to improve the sensitivity of the PEWMA chart for possible combinations of smoothing parameters. The proposed PEWMA-p chart has been developed for Poisson processes to monitor nonconformities per unit. The run-length (RL) profiles of the proposed PEWMA-p chart have been computed using extensively applied Monte Carlo simulations. The proposed PEWMA-p chart super-passes the counterparts for monitoring small shifts. An illustrative implementation related to the food quality for the proposed PEWMA-p with existing competitors is also part of the study which highlights the importance of the proposed chart.

 

Keywords: Attribute characteristics; control chart; EWMA chart; memory-type charting schemes; Poisson distribution

 

Abstrak

Untuk memantau ciri kualitatif minat, carta kawalan atribut disyorkan. Carta kawalan Poisson paling kerap digunakan untuk menjejaki bilangan ketidakpatuhan per unit dalam proses perindustrian semasa pemeriksaan. Penyelidikan ini memperkenalkan skema carta Poisson EWMA (PEWMA) menggunakan paradigma progresif (PEWMA-p) untuk meningkatkan sensitiviti carta PEWMA untuk kemungkinan gabungan parameter pelicin. Carta PEWMA-p yang dicadangkan telah dibangunkan untuk proses Poisson untuk memantau ketidakpatuhan setiap unit. Profil panjang larian (RL) carta PEWMA-p yang dicadangkan telah dikira menggunakan simulasi Monte Carlo yang digunakan secara meluas. Carta PEWMA-p yang dicadangkan melepasi rakan sejawat untuk memantau anjakan kecil. Pelaksanaan ilustrasi berkaitan kualiti makanan untuk PEWMA-p yang dicadangkan dengan pesaing sedia ada juga merupakan sebahagian daripada kajian yang menyerlahkan kepentingan carta yang dicadangkan.

 

Kata kunci: Atribut ciri; carta EWMA; carta kawalan; skim carta jenis ingatan; taburan Poisson

 

REFERENCES

Abbas, Z., Nazir, H.Z., Riaz, M., Shi, J. & Abdisa, A.G. 2023. An unbiased function‐based Poisson adaptive EWMA control chart for monitoring range of shifts. Quality and Reliability Engineering International 39(6): 2185-2201. https://doi.org/ https://doi.org/10.1002/qre.3320

Abbas, Z., Nazir, H.Z., Akhtar, N., Riaz, M. & Abid, M. 2020. On developing an exponentially weighted moving average chart under progressive setup: An efficient approach to manufacturing processes. Quality and Reliability Engineering International 36(7): 2569-2591.

Abbasi, S.A. 2017. Poisson progressive mean control chart. Quality and Reliability Engineering International 33(8): 1855-1859.

Ahmad, H., Amini, M., Gildeh, B. S., and Nadi, A. A. 2024. Copula-based multivariate EWMA control charts for monitoring the mean vector of bivariate processes using a mixture model. Communications in Statistics-Theory and Methods 53(12): 4211-4234.

Alevizakos, V. & Koukouvinos, C. 2020. A comparative study on Poisson control charts. Quality Technology & Quantitative Management 17(3): 354-382.

Ali, S., Abbas, Z., Nazir, H.Z., Riaz, M., Zhang, X. & Li, Y. 2021. On designing mixed nonparametric control chart for monitoring the manufacturing processes. Arabian Journal for Science and Engineering 46(12): 12117-12136.

Aly, A.A., Saleh, N.A. & Mahmoud, M.A. 2022. An adaptive EWMA control chart for monitoring zero-inflated Poisson processes. Communications in Statistics-Simulation and Computation 51(4): 1564-1577.

Aly, A.A., Saleh, N.A. & Mahmoud, M.A. 2021. An adaptive exponentially weighted moving average control chart for poisson processes. Quality Engineering 33(4): 627-640.

Batool, Z. & Haq, A. 2024. An adaptive EWMA chart for Poisson process. Quality Technology & Quantitative Management 22(1): 55-70. https://doi.org/10.1080/16843703.2024.2304958

Borror, C.M., Champ, C.W. & Rigdon, S.E. 1998. Poisson EWMA control charts. Journal of Quality Technology 30(4): 352-361.

Capizzi, G. & Masarotto, G. 2003. An adaptive exponentially weighted moving average control chart. Technometrics 45(3): 199-207.

Chen, J.H. 2020. A double generally weighted moving average chart for monitoring the COM-Poisson processes. Symmetry 12(6): 1014.

Ghasemian, P., and Noorossana, R. 2024. The Inertial properties of EWMA control charts. Communications in Statistics-Theory and Methods 53(12): 4542-4555.

Khoo, M.B. 2004. Poisson moving average versus c chart for nonconformities. Quality Engineering 16(4): 525-534.

Li, J., Zhou, Q. & Ding, D. 2020. Efficient monitoring of autocorrelated Poisson counts. Iise Transactions 52(7): 769-779.

Montgomery, D.C. 2019. Statistical Quality Control. 8th ed. New York: John Wiley & Sons.

Ryan, A.G. & Woodall, W.H. 2010. Control charts for Poisson count data with varying sample sizes. Journal of Quality Technology 42(3): 260-275.

Shen, X., Zou, C., Jiang, W. & Tsung, F. 2013. Monitoring Poisson count data with probability control limits when sample sizes are time varying. Naval Research Logistics (NRL) 60(8): 625-636.

Sheu, S.H. & Chiu, W.C. 2007. Poisson GWMA control chart. Communications in Statistics - Simulation and Computation® 36(5): 1099-1114.

Sheu, W.T., Hsu, Y.L., Liu, Y.W. & Lu, S.H. 2023. The triple generally weighted moving average control chart for monitoring Poisson observations. Annals of Operations Research 349: 397-424. https://doi.org/https://doi.org/10.1007/s10479-023-05751-2

Testik, M.C., McCullough, B. & Borrar, C.M. 2006. The effect of estimated parameters on Poisson EWMA control charts. Quality Technology & Quantitative Management 3(4): 513-527.

Zhang, L., Govindaraju, K., Lai, C. & Bebbington, M. 2003. Poisson DEWMA control chart. Communications in Statistics-Simulation and Computation 32(4): 1265-1283.

Zhou, Q., Shu, L., and Jiang, W. 2016. One-sided EWMA control charts for monitoring Poisson processes with varying sample sizes. Communications in Statistics-Theory and Methods 45(20): 6112-6132.

 

*Corresponding author; email: waqarhafeez78601@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous