Sains Malaysiana 54(9)(2025): 2327-2335
http://doi.org/10.17576/jsm-2025-5409-18
Monitoring
Stability of Nonconformities Per Unit with Efficient Memory-Type Structure
(Memantau Kestabilan Ketakakuran Setiap
Unit dengan Struktur Jenis
Memori yang Cekap)
WAQAR
HAFEEZ1,*, ZAMEER ABBAS2, HAFIZ ZAFAR NAZIR3 & SAJID SULTAN4
1Haide College, Ocean University of China,
Qingdao, Shandong, China
2KLATASDS-MOE, School of Statistics, East China Normal University,
Shanghai, China
3Department of Statistics, University of Sargodha, Sargodha,
Pakistan
4Dupty Director (Statistical Analyst), National School of Public
Policy, Lahore, Pakistan
Received: 3
December 2024/Accepted: 2 July 2025
Abstract
For
monitoring the qualitative characteristics of interest attribute control charts
are recommended. Poisson control charts are most frequently used to track the
number of nonconformities per unit in industrial processes during the
inspection. This study introduces a Poisson EWMA (PEWMA) charting scheme using
a progressive paradigm (PEWMA-p) to improve the sensitivity of the PEWMA chart
for possible combinations of smoothing parameters. The proposed PEWMA-p chart
has been developed for Poisson processes to monitor nonconformities per unit.
The run-length (RL) profiles of the proposed PEWMA-p chart have been computed
using extensively applied Monte Carlo simulations. The proposed PEWMA-p chart
super-passes the counterparts for monitoring small shifts. An illustrative
implementation related to the food quality for the proposed PEWMA-p with
existing competitors is also part of the study which highlights the importance
of the proposed chart.
Keywords:
Attribute characteristics; control chart; EWMA chart; memory-type charting
schemes; Poisson distribution
Abstrak
Untuk memantau ciri kualitatif minat, carta kawalan atribut disyorkan. Carta kawalan Poisson
paling kerap digunakan untuk menjejaki bilangan ketidakpatuhan per unit dalam proses perindustrian semasa pemeriksaan. Penyelidikan ini memperkenalkan skema carta
Poisson EWMA (PEWMA) menggunakan paradigma progresif (PEWMA-p) untuk meningkatkan sensitiviti carta
PEWMA untuk kemungkinan gabungan parameter pelicin. Carta
PEWMA-p yang dicadangkan telah dibangunkan untuk proses
Poisson untuk memantau ketidakpatuhan setiap unit. Profil panjang larian (RL) carta PEWMA-p yang dicadangkan telah dikira menggunakan simulasi Monte Carlo
yang digunakan secara meluas. Carta PEWMA-p yang dicadangkan melepasi rakan sejawat untuk memantau anjakan kecil. Pelaksanaan ilustrasi berkaitan kualiti makanan untuk PEWMA-p yang dicadangkan dengan pesaing sedia ada juga merupakan sebahagian daripada kajian yang menyerlahkan kepentingan carta
yang dicadangkan.
Kata kunci: Atribut ciri; carta EWMA; carta kawalan;
skim carta jenis ingatan; taburan Poisson
REFERENCES
Abbas, Z., Nazir, H.Z., Riaz, M., Shi, J.
& Abdisa, A.G. 2023. An unbiased function‐based Poisson adaptive EWMA
control chart for monitoring range of shifts. Quality and Reliability
Engineering International 39(6): 2185-2201. https://doi.org/
https://doi.org/10.1002/qre.3320
Abbas, Z., Nazir, H.Z., Akhtar, N., Riaz,
M. & Abid, M. 2020. On developing an exponentially weighted moving average
chart under progressive setup: An efficient approach to manufacturing
processes. Quality and Reliability Engineering International 36(7):
2569-2591.
Abbasi, S.A. 2017. Poisson progressive mean
control chart. Quality and Reliability Engineering International 33(8):
1855-1859.
Ahmad, H., Amini, M., Gildeh, B. S., and
Nadi, A. A. 2024. Copula-based multivariate EWMA control charts for monitoring
the mean vector of bivariate processes using a mixture model. Communications
in Statistics-Theory and Methods 53(12): 4211-4234.
Alevizakos, V. & Koukouvinos,
C. 2020. A comparative study on Poisson control charts. Quality Technology
& Quantitative Management 17(3): 354-382.
Ali, S., Abbas, Z., Nazir, H.Z., Riaz, M.,
Zhang, X. & Li, Y. 2021. On designing mixed nonparametric control chart for
monitoring the manufacturing processes. Arabian Journal for Science and
Engineering 46(12): 12117-12136.
Aly, A.A., Saleh, N.A. & Mahmoud, M.A.
2022. An adaptive EWMA control chart for monitoring zero-inflated Poisson
processes. Communications in Statistics-Simulation and Computation 51(4):
1564-1577.
Aly, A.A., Saleh, N.A. & Mahmoud, M.A.
2021. An adaptive exponentially weighted moving average control chart for poisson processes. Quality Engineering 33(4):
627-640.
Batool, Z. & Haq, A. 2024. An adaptive
EWMA chart for Poisson process. Quality Technology & Quantitative
Management 22(1): 55-70. https://doi.org/10.1080/16843703.2024.2304958
Borror, C.M., Champ, C.W. & Rigdon,
S.E. 1998. Poisson EWMA control charts. Journal of Quality Technology 30(4):
352-361.
Capizzi, G. & Masarotto,
G. 2003. An adaptive exponentially weighted moving average control chart. Technometrics 45(3): 199-207.
Chen, J.H. 2020. A double generally
weighted moving average chart for monitoring the COM-Poisson processes. Symmetry 12(6): 1014.
Ghasemian, P., and Noorossana,
R. 2024. The Inertial properties of EWMA control charts. Communications in
Statistics-Theory and Methods 53(12): 4542-4555.
Khoo, M.B. 2004. Poisson moving average
versus c chart for nonconformities. Quality Engineering 16(4): 525-534.
Li, J., Zhou, Q. & Ding, D. 2020.
Efficient monitoring of autocorrelated Poisson counts. Iise Transactions 52(7): 769-779.
Montgomery, D.C. 2019. Statistical
Quality Control. 8th ed. New York: John Wiley & Sons.
Ryan, A.G. & Woodall, W.H. 2010.
Control charts for Poisson count data with varying sample sizes. Journal of
Quality Technology 42(3): 260-275.
Shen, X., Zou, C., Jiang, W. & Tsung,
F. 2013. Monitoring Poisson count data with probability control limits when
sample sizes are time varying. Naval Research Logistics (NRL) 60(8):
625-636.
Sheu, S.H. & Chiu, W.C. 2007. Poisson
GWMA control chart. Communications in Statistics - Simulation and
Computation® 36(5): 1099-1114.
Sheu, W.T., Hsu, Y.L., Liu, Y.W. & Lu,
S.H. 2023. The triple generally weighted moving average control chart for
monitoring Poisson observations. Annals of Operations Research 349:
397-424. https://doi.org/https://doi.org/10.1007/s10479-023-05751-2
Testik, M.C., McCullough, B. & Borrar, C.M. 2006. The effect of estimated parameters on
Poisson EWMA control charts. Quality Technology & Quantitative
Management 3(4): 513-527.
Zhang, L., Govindaraju, K., Lai, C. &
Bebbington, M. 2003. Poisson DEWMA control chart. Communications in
Statistics-Simulation and Computation 32(4): 1265-1283.
Zhou, Q., Shu, L., and Jiang, W. 2016.
One-sided EWMA control charts for monitoring Poisson processes with varying
sample sizes. Communications in Statistics-Theory and Methods 45(20):
6112-6132.
*Corresponding
author; email: waqarhafeez78601@gmail.com